Influence of Different Execution Models
on Patrolling Ant Behaviors: from Agents to Robots

Arnaud Glad Olivier Simonin

Olivier Buffet Francois Charpillet

MAIA Team, LORIA
INRIA / Nancy University
Nancy, France
firstname.lastname®@lIoria.fr

ABSTRACT

Generally, swarm models and algorithms consider synchro-
nous agents, i.e., they act simultaneously. This hypothesis
does not fit multi-agent simulators nor robotic systems. In
this paper, we consider such issues on a patrolling ant al-
gorithm. We examine how different execution hypotheses
influence self-organization capabilities and patrolling perfor-
mances of this algorithm. We consider the mono and multi-
agent cases, the synchronism and determinism hypotheses,
and the execution of the model with real robots.

Categories and Subject Descriptors

1.2 [Distributed Artificial Intelligence]: Multiagent sys-
tems

General Terms

Algorithms, Experimentation, Theory

Keywords

Agent Cooperation::Biologically-inspired approaches and
methods, Agent-based simulations::Simulation techniques,
tools and environments

1. INTRODUCTION

When we talk about situated multi-agent systems, the-
oretical, simulation and robotic implementation aspects of
the problem are usually taken separately, each under differ-
ent hypotheses. In this context, do theoretical results always
make sense in a robotic implementation? Fairly different
hypotheses in a real implementation may lead to different
system behaviors. Are we sure that we can investigate all
the system properties through simulations? Simulations are
not exhaustive, some undiscovered situations may lead to
undesired behaviors.

Cite as: Influence of Different Execution Models on Patrolling Ant Be-
haviors: from Agents to Robots, A. Glad, O. Simonin, O. Buffet, F. Charpil-
let, Proc. of 9th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2010), van der Hoek, Kaminka,
Lespérance, Luck and Sen (eds.), May, 10-14, 2010, Toronto, Canada, pp.
- 1173-1180

Copyright © 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1173

Whereas the multi-agent paradigm is implicitly built on
the interactions between agents, works on swarm algorithms
do not usually pay attention to the question of the execution
model. Axtell [3] shows how the activation model can im-
pact simulation results. Depending on the simulated model,
changing the activation model leads either to statistically
different results or qualitatively different and unrealistic out-
puts. The lack of information about the execution model
may also lead to re-implementation errors and force to align
the model on known experimental data [6]. But even this
process does not ensure the faithfulness of the reimplemen-
tation as various execution models may produce the output
on given settings.

In the sake of simplicity, swarm algorithms are usually
considered as synchronous and do not specify how to solve
conflicts between the agents. However, modelers often use
asynchronous schedulers, either because of their unaware-
ness of this simulation aspect or the efforts needed to adapt
and implement models to synchronous execution models [17]
(the designer has to distinguish the production of influ-
ences from the reaction of the world and to manage the
synchronization and interactions between agents explicitly
[7]). Also, even if more and more multi-agent simulators
[13] implement synchronous schedulers, they often propose
asynchronous schedulers by default.

When implementing a conceptual model, questions about
execution models are often solved in relation to the con-
straints of the platform without taking care of the validity
of these choices.

In this paper, we explore this question and the effects
of the hypotheses made on the execution model of EVAP,
an ant inspired approach for multi-agent patrolling. The
patrolling task consists in deploying several agents in or-
der to visit defined places of an environment as regularly as
possible. It aims at gathering reliable information, seeking
objects or watching over places to defend them against in-
trusions (building surveillance, fire hazard prevention, web
pages indexation [1, 2, 4]). An efficient patrol requires to
minimize the time between two consecutive visits of all the
places of the environment.

Various approaches — as described in [1] — have been
proposed to address this problem and are based on agents
following Traveling Salesman Problem solutions, Ant Colony
Optimization (ACO), stigmergic ant algorithms or reinforce-
ment learning.

We are particularly interested in ant algorithms, proposed
for the covering and patrolling problems by Wagner [16],
which guarantee to repeatedly visit the environment with

competitive performances. These algorithms are fully de-
centralized and rely on memoryless agents with very simple
individual behaviors. Agents can only communicate through
environment marking and, as they only mark and move ac-
cording to their local perception, do not need information
about the environment.

First, we introduce the patrolling problem and present the
EVAP algorithm. In a second section, we review problems
raised by the execution model (conflict resolution, schedul-
ing for simulation and hypotheses for robotic implementa-
tion). Sections 4 and 5 are dedicated to the study of differ-
ent execution models on two EVAP properties (respectively
the patrolling property and the emergence of stable cycles).
Finally, Section 6 concludes this work and presents some
perspectives.

2. CONTEXT
2.1 The Patrolling Problem

As explained in the introduction, the multi-agent patrol-
ling problem consists in visiting several places of a discrete
environment in order to minimize the time between two con-
secutive visits. This delay is also called idleness.

2.2 Patrolling Ants

Ant-based approaches rely on simple agents evolving in
a discrete environment. These agents are memoryless and
do not have any environment representation. They are only
able to move to neighboring cells, mark the current cell and
perceive marks on neighboring cells.

The environment is represented as a strongly connected
graph' G(V,E) and each vertex has a marking. In the gen-
eral case, these markings can be seen as vector spaces, so
that agents may mark vertices with multiple mark types.

Most ant algorithms fit this description and only differ on
the order of execution of the possible actions and the seman-
tics of the marking. We can cite, as examples, Vertex-Ant-
Walk (VAW) algorithms [16, Appendix II-A], an exploration
algorithm by Thrun [15], LRTA* and Node Counting [10],
and EVAP/EVAW [9].

2.3 The EVAP Algorithm

The EVAP algorithm introduced in [5] is an ant inspired
algorithm that only relies on the evaporation of a pheromone
dropped by agents. Their behavior is defined as a gradient
descent (Figure 1).

‘ <— agent

Figure 1: An EVAP agent descending a pheromone
gradient

In a strongly connected graph, a path exists between each
pair of vertices.

1174

Algorithm 1 describes an EVAP agent’s individual behav-
ior. When arriving on a vertex, the agent drops a fixed
quantity Qmaz of pheromones — marking its visit — and
moves on a neighboring vertex according to its local percep-
tion. As the the pheromone evaporates (Alg. 2), the quantity
remaining on a vertex represents the elapsed time since the
last visit. So the agent behavior is defined by moving locally
to the vertex that has not been visited for the longest time.

Algorithm 1: Behavior of an EVAP agent

while true do
Find vertex = of Neighborhood with the lowest
value
(in case of a tie, make a random choice)
Move to vertex x
Qphe'romone(x) — QMaz

Algorithm 2: Environment Algorithm

foreach vertex v € Environment do
L Qpheromone(v) «— Qpheromone (U)P

It has been shown that EVAP has some interesting prop-
erties. In [9], we extended a proof of covering from [16].
i.e. the fact that all the vertices of the environment are vis-
ited in finite time. We will also see in Section 4 that the
EVAP algorithm revisits all the cells of the environment in-
finitely often. This property is called patrolling property.
This algorithm also exhibits a nice self-organization prop-
erty. After a time, the algorithm converges to a cycling
behavior. This is particularly interesting because cycles are
known to be good solutions for the patrolling problem, in
particular for Hamiltonian cycles which visit all the vertices
of the graph exactly once in a tour and are therefore optimal
solutions. Even when the algorithm has not yet converged,
the patrolling performances are good and may even be pretty
close to the optimum [5].

3. EXECUTION MODEL

At this point, do you feel yourself able to implement the
EVAP algorithm exactly as we did? What about the schedul-
ing or the resolution of conflicts between the agents?

Generally, works on reactive multi-agent systems only pre-
sent the agents’ behavior (like in Sec. 2.3), considering im-
plementation details like conflicts resolution and schedul-
ing hypotheses as implicit despite their significant influence
on simulation and robotic results. These details are often
chosen implicitly when implementing because of technical
constraints which differ depending on the platform (robots,
simulator, another simulator).

We focus here on these problems in the frame of dis-
crete situated reactive multi-agent systems (i.e. algorithms
intended to solve problems online in robotic applications).

3.1 Managing (non)Determinism

The first important point is to detail the handling of the
non determinism in these models. Non determinism presents
itself under three different aspects:

Hesitations.

Hesitations occur when agents have the choice between
different possibilities. In the EVAP case, it happens on
Alg. 1, line 2. This aspect is the easiest to handle as it
is usually explicitly present in the algorithms.

Conflicts.

Conflicts come from agents’ direct interactions when they
have to share a resource. As these interactions are not
present in the algorithm’s description, conflict handling is
rarely explicit. Let us take the EVAP example. What hap-
pens when two agents choose to visit the same cell 7 (see
Fig. 2-a) In such a conflict they may:

e visit the cell together (Fig. 2-b, this solution may be
problematic in a robotic implementation and clearly
suboptimal);

solve the conflict with a priority mechanism (Fig. 2-c,
e.g. first one arrived, priority based on their position
— think about the priority rules at road junctions —
or based on the agents identification — agents with
lower IDs have priority over agents with higher IDs

—);
not move and so not solve the conflict, leading the
system to a dead lock (Fig. 2-d).

O L=
o

#é D D,

Figure 2: Agents conflicting to go on the central cell

d)

We can see that the way conflicts are handled may change
the global behavior of the system and that they are often
solved because of implementation constraints.

Transitions and Time Granularity.

This is probably the most deceptive of these aspects. Sim-
ulations of discrete reactive MAS usually consider transi-
tions between system states as discrete. Time is then con-
sidered as discrete — where an iteration is the atomic unit
of time — but time granularity may greatly differ from one
simulation to another (i.e. from milliseconds for robotic sim-
ulations to thousands of years for geological simulations).
Conceptual models in swarm algorithms usually consider the
duration of an iteration as the time needed for an agent to
perform an atomic action (i.e. moving somewhere, picking
up objects, ...). Problems arise when the durations of itera-
tions in the conceptual model and in the implementation do
not match.

1175

Let us consider here the robotic implementation of a syn-
chronous model where agents act exactly once per iteration.
We can see that time granularity of the conceptual model
(an iteration represents the time needed for all agents to
perceive move and mark) and real robots (an iteration cor-
responds to a couple of milliseconds) do not match. There
are two options to handle this problem.

o Implementing the simulated system on robots as is:

If we want to stick to the model, agents should not
be allowed to move again before all other agents have
finished their action. All actions have to start and end
within the same iteration. So, faster agents waste time
waiting for slower ones when they are done, impacting
the performances of the system. Moreover, this ap-
proach requires a synchronization point at the begin-
ning of each iteration, which can be hard to implement
and not desirable in a decentralized robot swarm.

Fitting the conceptual model to robots specificities:

In this case, agents make their move as soon as they are
ready to. As the durations of various actions may differ
(the duration of a given action may even differ from
one timestep on another), the system inevitably drifts
and soon loses its synchronization (i.e. an agent may
start a new action before the others finished theirs).
In this perspective, are the theoretical and simulation
results based on the synchronous hypothesis still valid
or are we studying a different model? For the answer,
see Sec. 5.2.

3.2 Scheduling Hypotheses

Acting synchronously or sequentially may change the
global behavior of the system but scheduling hypotheses are
rarely given with the model. Moreover, despite the fact that
ant algorithms are usually considered as synchronous — all
agents act simultaneously —, discrete simulators rarely im-
plement synchronous schedulers. In this section, we will see
different scheduling models for discrete time simulation.

Synchronous Approaches.

Synchronous scheduling seems to be a clever choice. Di-
rect interactions between agents (i.e. conflicts) only occur
when two or more agents wish to do incompatible actions at
the same time. So, synchronous simulation may be a useful
tool to identify such conflicts and figure out how to solve
them. However a synchronous scheduling is harder to im-
plement than an asynchronous one. The influence-reaction
model [7] explains how to approach this problem. First, all
agents have to make their decisions without executing them
(agents produce influences). In a second phase, the simula-
tor has to combine influences and solve all the conflicts (re-
action of the environment). There is no generic tool to solve
conflicts automatically, so this task is left to the designer.
Thus, although most discrete multi-agent simulators seem
to be synchronous — because all agents make their move in
a single iteration —, they implement in fact asynchronous
schedulers.

Asynchronous Approaches.

Among all variations of asynchronous scheduling, we only
present here asynchronous sequential scheduling (i.e. all
agents act sequentially within an iteration).

e Asynchronous cyclic scheduling: At each itera-
tion, agents are sequentially activated in a fixed order.

e Asynchronous acyclic scheduling: At each iter-
ation, agents are sequentially activated in a random
order.

Asynchronous sequential scheduling present the advan-
tage — or disadvantage if the designer is not aware of it
— of implicitly solving most of the conflicts between agents.
The scheduling order makes agents act one after the other
and thus are no longer in a conflicting situation. We can
also notice that even if both cyclic and acyclic sequential
schedulings solve conflicts, the first one solves them deter-
ministically (when two given agents are in conflict, it is al-
ways the same one — the first in the list — who “wins”)
while we cannot predict the solution for the second one.

3.3 Robotic Implementation

The implementation of swarm models with autonomous
robots is a general and complex challenge. More precisely,
the main issues are :

e Robots are autonomous, i.e. they are not synchronous
when taking decisions. Moreover, using a scheduler
does not make sense as robots hold their own proces-
sor which activates themselves. Although, robots can
be synchronized, but in this case the system loses the
property of being a decentralized system.

Robots cannot be considered as identical agents. For
instance two similar mechanisms may lead to two
slightly different results. This implies that transitions
cannot be considered as deterministic. =~ Moreover,
robots often evolve in a non deterministic world.

Algorithms requiring active environments are difficult
to implement due to the nature of the considered pro-
cesses: marking the environment, dropping a phero-
mone! However, in these days, such mechanisms can
be implemented via environments augmented with sen-
sor networks [12].

Figure 3: Schema of tiles emulator

In this paper, we analyze swarm algorithm hypotheses in
order to take a step towards their robotic implementation.
To examine the implementation of the EVAP algorithm with
robots, we rely on the Tiles model [14] (see Fig. 3) which
defines a device allowing the marking of the environment.
This model makes the following assumptions:

e The environment is paved with square tiles, each one
being embedded with an autonomous process able of
simple computations and communications with a robot.

1176

e Each tile is connected to its four neighboring tiles,
defining a network of communication.

e Robots can locally read and write information on a tile,
and diffuse information to others through the tiles.

We implemented the EVAP model on Khepera 3 robots and
the environment marking/reading with a tiles emulator. The
advantage of such a choice is that robots remain autonomous
and are not synchronized with the active environment. A
video of the EVAP model implementation on the tiles emula-
tor is accessible at “http://www.loria.fr/~simoniol/
EVAP.htm!”. Results are analyzed in the following sections.

4. THE PATROLLING PROPERTY

We present here the patrolling property which consists
in revisiting infinitely often and as regularly as possible all
the vertices of the graph representing the environment. We
first prove that agents never stop patrolling then we look
at the performances of the simulated model with different
numbers of agents, with various schedulers and conflict reso-
lution mechanisms. Finally, we take a look on the problems
raised by our robotic implementation.

4.1 Qualitative Results

It is not obvious — given the agent behavior presented
in Alg. 1 — that all cells are revisited after a first cover-
age of the environment. This is a central problem. Even
if simulation results show that agents actually patrol, noth-
ing ensures that particular topologies may not lead to the
formation of non revisited vertices islets.

It is easy to prove that EVAP ants cover the graph re-
peatedly. This can be done by assuming that at a given
point agents stop patrolling the entire environment, leav-
ing at least one vertex un(re)visited and the others visited
infinitely often.

The agents continue to repeatedly visit the vertices of the
patrolled area, each time reseting the pheromone value to
Qmaz- Therefore, after the covering of the patrolled zone,
the values of the non-patrolled area cells are necessarily
lower than any other cell. So, when an agent visits a vertex
on the border of the patrolled area, it necessarily perceives
a vertex of the non patrolled area which contains the mini-
mum value of its perceptions. There is a contradiction with
the initial assumption as, according to the EVAP agent be-
havior presented in Section 2.3, the agent will visit a cell of
the non patrolled area.

This result is interesting as the demonstration is only
based on the visit of a vertex and on the agents behavior.
No assumption is made on scheduling, conflicts resolution
or even the topology of the environment. Although having
no hints about performance, we can be sure that the EVAP
agents patrol no matter what hypotheses on the execution
model are made.

4.2 Quantitative Results

Metrics.
In order to study EVAP in simulation, we use two perfor-
mance criteria based on idleness taken from [11]:

e Instantaneous Graph Idleness (IGI) corresponds to
the average idleness of all the vertices of the graph
at a given moment,

o Worst Graph Idleness (WGI) corresponds to the worst
idleness on the graph at a given moment.

In [5], the authors give theoretical bounds for the opti-
mality of both IGI and WGI. Let ¢ be the number of cells
on the environment and n the number of agents. We have:

e an optimal WGI bound: = —1,

£
n

e an optimal IGI bound: =5 —.

Note that these bounds are only exact for Hamiltonian envi-
ronments (i.e. environments that admit at least one Hamil-
tonian cycle). For other environments, these bounds cannot
be reached and the actual optimal bounds are necessarily
higher and depend on the topology.

Simulation Hypotheses.

As explained in Section 3, Algorithms 1 and 2 are not
sufficient to simulate the system. We precise here hypotheses
on the environment, how conflicts are handled and which
schedulers are chosen.

e Fnvironment: To represent the area to be patrolled,
we choose to discretize the environment into a grid
where each cell represents a small zone corresponding
approximatively to the perception area of an agent.
From each cell, agents can access their four neighbors.
For coherence of agents perception, the evaporation
process is computed on cells once per iteration once
all the agents have moved.

Scheduler: Asynchronous cyclic and acyclic sequential
schedulers seem to be good choices. Indeed, because of
the sequential actions, agents are never in conflict. Let
us consider two agents in a conflicting situation where
both of them choose to visit the same cell. According
to Alg. 1 when an agent performed his move, it marks
the cell he just arrived in. So when agent a: moves
and marks the cell, agent a2 will necessarily chose an-
other destination. This scheduling type is particularly
interesting to simulate robotic implementations where
two robots may not be physically able to stand in the
same location.

Transitions: Transitions are constrained by the schedul-
ing. We consider that each agent perceives, moves and
marks once per iteration.

Figure 4: Agents patrolling on the “rooms” environ-
ment - 336 cells - non-hamiltonian environment

1177

Simulation Experiments.

Except for the transitions, these hypotheses seem to fit
well with the robotic implementation presented in Section 3.3.
So, we can expect a quite accurate simulation of the robotic
system.

We ran experiments on the “Rooms” environment (Fig.4),
taken from [5], with 2 and 16 agents with each scheduler.
Each setting has been run 50 times. Agents are randomly
distributed through the environment at the beginning of
each run. Figures 5 and 6 show idleness values averaged
over 50 runs. One can see both that the scheduling does not
change the algorithm’s general behavior and has no signifi-
cant impact on the performances.

We can here easily identify two distinct patrol phases on
both figures (this is more visible on Fig. 6). The idleness
— both IGI and WGI — increases to a high level at the
beginning of the simulation before to decrease to a stable
level. This is due to an exploration phase where agents
mostly act randomly. At the initialization, all cell values
are set to 0.

After the first coverage of the environment, agents per-
form better. The pheromone gradient created during the
exploration phase leads them to a more efficient patrol. The
algorithm shows then good performances in terms of IGI
(which is quite close to the optimum) even if some cells may
stay unvisited for a while, causing the WGI to raise.

500

WG eyclic

WG| acyclic

1G] cyclic

IGI acyclic

Optirmal WGl bound . —— ——
Optimal 1G] bound

&00

1000 2000 3000 4000 5000 6000 000

Figure 5: Idleness performance
environment

- 2 agents, rooms

180
WGl cyclic

WGl acyclic

161 cyclic

1G] acyclic

Optirnal WGl bound ——
Optimal 1G] bound

160

140

Figure 6: Idleness performance - 16 agents, rooms
environment

Finally, we can note that the increase in the number of
agents tends to smooth the curves and reduce the gap be-
tween the actual performances of the algorithm and the op-
timality bound.

Experiments with Robots.

A robotic implementation (Fig. 7) has been made with
Khepera 3 robots and the tiles environment emulator pre-
sented in Section 3.3.

.71 . 21

-
e

143 A6 S
Lol)

| oo -

Pherm = 18

Figure 7: Robotic implementation of the EVAP al-
gorithm on the tiles emulator

In order to avoid the case where two robots visit the same
cell simultaneously, a reservation mechanism has been im-
plemented. When an agent chooses its destination, it asks
its current tile to reserve its destination tile and waits for an
acknowledgement. If the tile is already reserved, the agent
has to choose another destination or to wait if there is no
other choice. This mechanism is very close to the conflict
resolution of the asynchronous acyclic sequential scheduler.

Because agents are decentralized and do not wait for each
other to perform their next action, the performances of the
robotic system should, intuitively, be slightly better. The
idleness measured in the robotic system have the same pro-
file than the one of the synchronous simulation (see Fig. 5),
the robotic implementation seems to be faithful to the EVAP
model.

5. SELF-ORGANIZATION PROPERTY:
CONVERGENCE TO CYCLES

Optimal WG
Optimsal 161

0 et o b sl e M b i

2000 3000 000 5000 6000 7000 amo 000 10000

Figure 8: Idleness performance - 4 agents, 8x8
square grid environment

Fig. 8 shows the idleness for a single simulation experi-
ment with 4 agents on an 8x8 grid without obstacles with
an asynchronous cyclic sequential scheduler. We can no-
tice that at approximately 8250 iterations, the WGI and
IGI curves become flat and coincide with the optimal lines.

1178

This phenomenon is explicable by a self-organization prop-
erty of the EVAP algorithm. It has been shown in (8] that
the algorithm always converges to cycles which are gener-
ally good solutions for the patrolling problem, in particular
in the case of Hamiltonian cycles that are always optimal.

5.1 Known Results

Cycle Definition.

We consider here cycles from a system viewpoint. Cycles
are defined as a finite sequence of system states where first
and last states are equivalent system states.

A system state is defined by the respective positions of
the agents and the pheromone gradient. Two system states
are said equivalent when:

e agents positions are equals,

e pheromone gradients of the two states are equal.

b) a cycle with three
distinct paths

a) a cycle with a common
shared path

Figure 9: Two different types of cycles

The system may converge to different cycle types where
each agent always covers the same distance as the others
during a tour (see [9]). This property guarantees the qual-
ity of the solution in terms of idleness. Fig. 9 shows two
types of cycles: a) a cycle where both agents follow the
same trajectory, b) three agents, each one in its own path.

Proof of Convergence.

In [8] we showed that the EVAP algorithm always con-
verges to a cyclic behavior. The proof is based on the fact
that EVAP operates over a finite state space. If the system is
(or is made) deterministic, the system converges necessarily
to a cycle. If the system is non deterministic the system can
be modeled as a Markov chain over a finite state space and
necessarily converges to an absorbing graph (cycles being
particular cases of absorbing graphs).

Absorbing graphs can be considered as cycles with some
non deterministic points where agents are able to switch
their position (i.e. agent a1 patrols agent a»’s area and re-
ciprocally) without breaking the cycle. Fig. 10 shows such
an absorbing graph. Nodes of the graph represent the non
deterministic points and edges all the (deterministic) simu-
lation steps between them. This absorbing graph is optimal
in term of idleness.

Cycles and Scheduling.

Unlike for the patrolling property, scheduling has visible
effects on the convergence to cycles. The algorithm still
converges to cycles but some of them may be unstable and
break, depending on the scheduling model.

EEq
2y I+
Py = “
e 1]
2 aT)
Ly
b I
Zanfig 1 1 i
Canfig 2
i v
ATy
=1 ::r‘]
Jrr:t I =
e e | —— i
Zonfig 3
Zanfig 4

Figure 10: Example of absorbing graph with two
agents - arrows on each cell represent the possible
choices of the agent the last time the cell was visited

We take here the examples of asynchronous cyclic and
acyclic schedulings.

Let Fig. 11 a) be the initial state of this example. Arrows
on each cell represent the possible choices of the agent the
last time the cell was visited and red arrows point towards
the lowest pheromone values in the agents neighborhood, so
to say, the cells that agents can visit in the next iteration.

Asynchronous cyclic scheduling: In this case, agents act
always in the same order (according to their ID number).
Agent a; has no other choice than going on the right cell
(up and down cells were visited during the last iteration).
Agent as has then no other choice than moving to its right
cell (which is the cell of lowest value in its neighborhood, see
Fig. 11.b). The system will cycle between states a) and b).

Asynchronous acyclic scheduling: In this case, agents are
activated in a random order. So, there is a chance that agent
a3 will act before agent a;. In this case, as has the choice to
go either up or right. If it goes right, the cycle may persist
temporarily (as in Fig. 11.b). If it goes up, agent al goes
down and the cycle is broken (Fig. 11.c).

So, this kind of cycle is not stable with an asynchronous
acyclic scheduling.

We have seen experimentally that for the same configura-
tion (environment and number of agents), simulations with
an asynchronous acyclic sequential scheduler do not produce
the same variety of cycles and, as less possible cycles ex-
ist, take more time to converge. Although the quality of
the solutions, in terms of idleness, does not depend on the
scheduling process.

5.2 Cycling Robots?

We explained in the last section that the proof of con-
vergence to cycles relies on a finite state space. However,
when moving from an abstract model with identical agents
to a real world with non-identical robots, one difference is
that the moves are unlikely to have a constant duration.
The speed of a move may depend on the robot and on the

1179

- =

I
_‘ T
|
I
I
T
b)
I
T T
I
1
I
a))
Figure 11: Example of absorbing graph with two

agents. Red arrows show the agents’ possible desti-
nations.

type of move. We now show on a particular example that
this difference leads to a system with an infinite number of
states.

Proor. Example: Let a1 and a2 be two agents on a 2 x 1
grid (the cells being denoted ¢; and c2), both agents being
initially located on c;. Because of their ant behaviors, both
will indefinitely alternate between c¢; and cs.

Let us now assume that a; moves from one cell to the
other in 1 time unit, and az in \/5 time units. Time can
still be discretized by only considering time steps when a;
or ag precisely arrives on a cell, i.e. time step of the form
t=klort==kx \/ﬁ, with £ € N. But, because 1 is rational
and v/2 is irrational, each new time instant corresponds to
a new position (in-between the cells) of either a1 or az, and
therefore to a new state.

From this, we can deduce that infinitely many new con-
figurations of the pheromone field will be generated. So, al-
though the system is completely deterministic, it will never
exhibit a stable cycling behavior. [

Experiments with robots show that, on our implementa-
tion and with multiple robots, the system actually loses the
ability to self-organize to stable cycles. However being able
to converge to cycles, they may only persist for a short time
before collapsing. The only solution we see to recover this
property with multiple robots would be to introduce syn-
chronization points so that the robotic system behaves like
the simulations with an asynchronous sequential scheduler.
Of course, as well as degrading performances — as faster
robots have to wait for the other before moving again —,
synchronization may not be desirable in a swarm of robots
because of the recentralization it implies.

6. CONCLUSION

This paper studied the effects of different execution mod-
els on the behavior of the EVAP algorithm, a general ant-
based approach for the patrolling problem. We have first
presented aspects that are usually ignored when designing a
discrete reactive multi-agent model:

e non determinism management (how agents react in
case of multiple choices, conflict resolution policies, de-
terminism of the transitions between states),

e hypotheses on scheduling (synchronous or asynchro-
nous and discrete scheduling, simulation of continuous
time).

These points are important because they may change the be-
havior of the model, gaining or losing properties depending
on the choices made.

We also presented a robotic implementation relying on
devices allowing the use of an active environment. Robotic
systems come with their own hypotheses that are more re-
strictive than in simulation.

Unfortunately, these hypotheses are often determined by
the implementation constraints. Most discrete multi-agent
simulators only propose a default asynchronous scheduler
resolving, by example, conflicting situations implicitly.

How comparable are a theoretical study, a simulation and
a robotic implementation, each one coming with its own hy-
potheses/execution model? We studied two properties of
the EVAP algorithm at these three levels and examined the
effects of different execution models on them. While the pa-
trolling property is resilient to the scheduling and to the way
conflicts are solved, the convergence to cycles is impacted
when these hypotheses change.

The problem comes for the conceptual models that are
clearly incomplete. Choices have to be made on execution
models, not when implementing but directly when defining
the model so that theoretical works, simulations and robotic
implementations work consistently among them. It would be
interesting to formalize the completeness of discrete reactive
multi-agent models in order to ensure that the objects stud-
ied in theory, simulation and robotics actually correspond
to the same model.

7. ACKNOWLEDGEMENTS

The authors thank Romain Mauffray for his participation
in the implementation of EVAP in the intelligent tiles and
the experimentations with the robots.

8. REFERENCES

[1] A. Almeida, G. Ramalho, H. Santana, P. Tedesco,
T. Menezes, V. Corruble, and Y. Chevaleyre. Recent
advances on multi-agent patrolling. In Advances in
Artificial Intelligence — Seventeenth Brazilian
Symposium on Artificial Intelligence (SBIA’04), pages
474-483. Springer-Verlag, 2004.

[2] R. Andrade, H. Macedo, G. Ramalho, and C. Ferraz.
Distributed mobile autonomous agents in network
management. In Proceedings of the International
Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’01), 2001.

[3] R. Axtell. Effects of interaction topology and
activation regime in several multi-agent systems. In
MABS 2000: Proceedings of the second international
workshop on Multi-agent based simulation, pages
33-48, Secaucus, NJ, USA, 2001. Springer-Verlag New
York, Inc.

[4] J. Cho and M. Garcia-Molina. Synchronizing a
database to improve freshness. In Proceedings of the
International Conference on Management of Data
(SIGMOD’00), 2000.

[5] H. Chu, A. Glad, O. Simonin, F. Sempé, A. Drogoul,
and F. Charpillet. Swarm approaches for the

[6]

[7]

8]

[9]

(10]

(1]

(14]

(15]

(16]

(17]

patrolling problem, information propagation vs.
pheromone evaporation. In Proceedings of the
International Conference on Tools with Artificial
Intelligence (ICTAI’07), pages 442—449, 2007.

B. Edmonds and D. Hales. Replication, replication
and replication: Some hard lessons from model
alignment. J. Artificial Societies and Social
Simulation, 6(4), 2003.

J. Ferber and J. Muller. Influences and reaction : a
model of situated multiagent systems. In Proceedings
of the 2nd International Conference on Multi-agent
Systems, pages 72—79, 1996.

A. Glad, O. Buffet, O. Simonin, and F. Charpillet.
Self-organization of patrolling-ant algorithms. In
CD-ROM Proceedings of the International Conference
on Self-Adaptive and Self-Organizing Systems,
SAS009, 2009.

A. Glad, O. Simonin, O. Buffet, and F. Charpillet.
Theoretical study of ant-based algorithms for
multi-agent patrolling. In Proceedings of the
FEighteenth European Conference on Artificial
Intelligence (ECAI’08), pp. 626-630, 2008.

S. Koenig, B. Szymanski, and Y. Liu. Efficient and
inefficient ant coverage methods. Annals of
Mathematics and Artificial Intelligence, 31(1-4), 2001.
A. Machado, G. Ramalho, J.-D. Zucker, and

A. Drogoul. Multi-agent patrolling: an empirical
analysis of alternative architectures. In Third
International Workshop on Multi-Agent Based
Simulation, pages 155-170, 2002.

M. Mamei and F. Zambonelli. Spreading pheromones
in everyday environments through RFID technology.
In 2nd IEEE Symposium on Swarm Intelligence, 2005.
F. Michel, J. Ferber, and O. Gutknecht. Generic
simulation tools based on MAS organization. In
Proceedings of the 10th European Workshop on
Modelling Autonomous Agents in a Multi Agent World
MAMAAW, 2001.

N. Pépin, O. Simonin, and F. Charpillet. Intelligent
tiles: Putting situated multi-agents models in real
world. In Proceedings of the International Conference
on Agents and Artificial Intelligence, 2009.

S. Thrun. Efficient exploration in reinforcement
learning. Technical Report CMU-CS-92-102, Carnegie
Mellon University, 1992.

I. Wagner, M. Lindenbaum, and A. Bruckstein.
Distributed covering by ant-robots using evaporating
traces. IEEE Transactions on Robotics and
Automation, 15:918-933, 1999.

D. Weyns and T. Holvoet. Model for simultaneous
actions in situated multi-agent systems. In First
German Conference on Multi-Agent System
Technologies, pages 105-119. Springer—Verlag, 2003.

